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Abstract  
 

This study explores the long-run effect of renewable and non-renewable energy consumption on the 

welfare cost. The human welfare cost of ambient particulate matter exposure, occupational particulate 

matter exposure, and household air pollution were examined. The data of the Organization for 

Economic Cooperation and Development between period 1990 - 2019 were used.  Contrary to non-

renewable energy, conventional mean-based panel estimators showed that renewable energy has an 

insignificant link with the health cost of ambient particulate matter exposure. Moreover, renewable 

energy consumption significantly and negatively affected the health cost of household air pollution. 

Furthermore, renewable, and non-renewable energy consumption showed a statistically insignificant 

effect on the welfare cost of occupational particulate matter exposure. Quantile dynamics uncover a 

dependent inverted U-shaped relationship between non-renewable energy utilization and the health 

risks of occupational particulate matter exposure. 
 

Keywords: Renewable energy, Non-renewable energy, Ambient, Welfare cost, Particulate 

matter.  
 

1. Introduction 
 

The industrialization is one of the major factors of increasing the concentrations of ambient particulate 

matter (PM). This is because PM emission usually originates from combustion processes which can be 

found in regular fossil fuel-powered machines such as automobiles as well as large-scale industrial 

processes such as power plants(Li et al., 2016). The size of PM determines its health hazard. The fine PM 

is less than 2.5µm in diameter (PM2.5) to the coarser variants which have a diameter range between 2.5µm 

-10µm. It is generally the case that finer particles are more toxic because they can reach the lungs deeper 

(Thurston, 2016). Schwartz et al. (2018) employ causal modeling techniques and show that exposure to 

greater concentrations of PM2.5 corresponds to the reduction in life expectancy. According to Sarkodie et 

al. (2019), the increase in PM2.5 exposure has a decreasing effect on the life expectancy of individuals 
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domiciled in North America, Europe, Central Asia, East Asia, and the Pacific region. Exposure to PM2.5  

can also be induced utilizing domestic cooking appliances using fossil fuels (Hanif, 2018b) follow-on the 

increased rate of mortality and morbidity rates. A remedy for such scenarios is the utilization of renewable 

energy sources instead which empirically shown an ameliorating effect on mortality and morbidity rates 

(Hanif, 2018a). 
 

In addition, figure 2 illustrates the proportion of the population exposed to ambient concentrations of PM2.5 

exceeding the defined value by the World Health Organization (WHO). To explore the environment 

pollution consequences from energy consumption, Feng et al. (2019) used TMDN-DEA, a model of two-

stage meta-frontier dynamic network data envelopment analysis. The study aimed to discover the 

environmental pollutions impact on mortality rate, tuberculosis rate, survival rate, and health expenditure 

efficiencies in 28 European Union (EU) countries and 53 non-EU countries between 2010 to 2014. The 

overall efficiency scores as well as the technology gap ratios of countries inside and outside the EU were 

assessed. In addition, the efficiencies of input and output variables in the production and health stage were 

estimated. Their findings signify that on average EU countries have achieved a higher efficiency than non-

EU countries. Relatively EU countries possess higher energy efficiency whilst non-EU countries possess 

higher health efficiency. Health expenditures were observed to be lower in non-EU countries compared to 

the EU countries. The renewable energy was observed to be more efficiently consumed than the non-

renewable energy. PM2.5 were also found to be higher relative to the carbon dioxide (CO2) efficiencies. 

What’s more, children’s mortality rates were deliberated to be higher than the adult’s mortality rate for both 

EU and non-EU countries. The Organization for Economic Cooperation and Development (OECD) is an 

intergovernmental economic organization that works to build better policies and standard social lives within 

38 member countries (OECD, 2021). The economies of the OECD are among the world most developed. 

Therefore, they would be the largest energy consumers. They also possess the necessary technology to 

remedy the risks associate with air pollution. This qualifies the member countries as a case study. Figure1 

depicts the PM2.5, air pollution, mean annual exposure in the OECD region between the years1990 and 

2017. 
 

Figure 1. PM2.5, air pollution, mean annual exposure in the OECD region 1990- 2017. 
 

 
 

This figure was created by the author and was based on the database of the World Bank Open Data (2021) 

In addition, figure 2 illustrates the proportion of population exposed to ambient concentrations of PM2.5 

exceeding the defined value by WHO. 
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Figure 2.  proportion of the population exposed to ambient concentrations of PM2.5 exceeding WHO value. 
 

 
 

This figure was created by the author based on the database of the World Bank Open Data (2021). 
 

The study serves as a framework to assess the impact of adoption of renewable or non-renewable energy, 

technology on the human welfare cost of ambient PM emissions, occupational, and household. This is 

important because the policy framework needed to mitigate the proliferation of PM emissions which may 

not be homogenous across the spectrum of the sources of these emissions. Therefore, there arises a need to 

empirically isolate —heterogeneously, the impact of renewable energy, non-renewable energy, and 

innovation on the human welfare cost of occupational, household, and ambient PM emissions. The human 

welfare cost of PM emissions is calculated as the disability adjusted life years (DALYS). It is a time-based 

measure that merges the years of life lost because of premature mortality and years of life lost due to time 

spent under conditions of less than full health, or the years of healthy life lost due to an underlying ailment 

or disability. It is a much more holistic way of measuring health risks because it combines both mortality 

and morbidity into a single unit. The study used data for OECD between the years 1990 and 2019. Table 1 

summarizes the data sources and the measurements.  
            

Table 1. Data sources and measurement 
 

Variables Measurement Transformation Source 

Welfare cost of occupational 

particulate matter 

Disability adjusted life years 

per capita. 

Log transformed OECD 

Statistics 

Welfare cost of indoor air 

pollution 

Disability adjusted life years 

per capita. 

Log transformed OECD 

Statistics 

Welfare cost of ambient 

particulate matter 

Disability adjusted life years 

per capita. 

Log transformed OECD 

Statistics 

Patent applications Number of patent applications 

per capita. 

Log transformed WDI 

GDP per capita Constant 2010 US Dollars Log transformed WDI 

Population Number of people at mid-year Log-transformed WDI 

Renewable energy consumption 

per-capita 

Tons of oil equivalent  Log-transformed WDI 

 

2. Background 
 

The seminal paper of Grossman and Krueger (1991) discovered different mechanisms in which 

environmental degradation can be induced via the scale, technique, and composition effects of trade and 

foreign investment policy.  These effects are however not limited to trade and foreign investment activities 

but also can be induced by various macro-economic variables. Studies further carried out to test the sources 

of energy, economic growth, and environmental degradation. Ang (2007) empirically uncovered economic 

growth exerts a long-run causal effect on energy use and environmental pollution. This comes with the 
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implication that economic activities spur energy utilization and thus harming the environment. Liu and Hao 

(2018) empirically tested the types of energy source, economic growth, and carbon emissions along the belt 

and road. The study employed a panel dataset of 69 countries from 1970 to 2013. The result of panel 

Granger causality analysis was inferred a long-run bidirectional causalities amongst carbon emissions, 

energy use, industry value-added, and (gross domestic production) GDP per capita. However, by controlling 

sub-sample grouping, a unidirectional short-run causality flowed from GDP to renewable energy while 

long-run causality flowed in the inverse direction for only energy-importing countries. Nevertheless, for 

energy-exporting countries there exists a bi-directional causal relationship between energy use and GDP 

per capita in long-run. This implies that long-run energy conservation policies would affect economic 

growth in long-run for both importing and exporting countries. Additionally, Cai et al (2018) investigated 

the empirical relationship between clean energy, economic growth, and carbon emissions in the case of G7 

countries. Their empirical analyses showed the existence of causality running from clean energy 

consumption to carbon emissions in Germany with feedback. Furthermore, a unidirectional causal flow is 

uncovered running from clean energy consumption to carbon emissions in the US. In the case of Germany, 

this may imply that clean energy consumption impacts the environmental quality and concerns about the 

quality of the environment further impact clean energy consumption. This thus brings about the 

bidirectional relationship in the German case. Concerning the association of health risks with economic 

activities and energy consumption studies have been carried out.  Note that environmental pollution can 

cause a higher rate of societal mortality therefore the health risk perspective was deliberated. Rasoulinezhad 

et al. (2020) employed the generalized method of moments (GMM) estimation technique for the 

Commonwealth of Independent States (CIS) members within the period 1993–2018. The findings indicate 

that the highest variability of mortality could be attributed to CO2 variability. Concerning fossil fuel 

consumption showed a significant influence on mortality rate due to cardiovascular disease (CVD), 

Diabetes Mellitus (DM), cancer, and Chronic Respiratory Disease (CRD). Furthermore, any enhancement 

in the human development index (HDI) exerts a negative effect on mortality increments from CVD, DM, 

cancer, and CRD in the CIS region. Recently, Koengkan et al. (2021) examined the impact of renewable 

energy consumption on reducing the outdoor air pollution death rate, in nineteen Latin America and the 

Caribbean countries, from 1990 to 2016. The econometric technique of quantile regression for panel data 

was applied. Their findings indicate a significant positive impact of economic growth and fossil fuel 

consumption on CO2 emissions, whereas renewable energy consumption negatively impacts the 

CO2emissions. Furthermore, fossil fuel consumption showed a positive impact on the mortality rate while 

economic growth had a negative effect. The model divulges the intake of renewable energy can 1) directly 

mitigate the outdoor air pollution death rates 2) indirectly lead to combinations sources of energy and less 

utilization of fossil fuels. 
 

3. Method 
 

The study adopted the analytical model of Stochastic Estimation of Impacts by Regression on Population, 

Affluence, and Technology (STIRPAT). The STIRAT model was developed by (Dietz and Rosa 1994) as 

a stochastic reformulation of the IPAT (Impacts of Population, Affluence, and Technology). The formula 

is an accounting equation. Therefore, the IPAT formulation cannot be employed for hypothesis testing since 

the strict proportionality of the effects of P, A, and Ton I have already assumed a priori. These core issues 

have properly addressed by the STIRPAT reformulation as it treats and relaxes these effects as parameters 

by proportionality restrictions imposed because of the IPAT identity. The standard STIRPAT model takes 

the following specification in “Eq. (1)”. 

                                                                 𝐼𝑖 = 𝑎𝑃𝑖𝑡
𝑏𝐴𝑖𝑡

𝑐 𝑇𝑖𝑡
𝑑𝑒𝑖𝑡 .                                                              (1) 

 

Let P symbolizes population using, affluence by A, and technology T which are multiplicative functions of 

environmental impact. T usually includes in the error term e because there is an unknown variable that can 

holistically capture technological effects. All variables have log-linearized to simplify the estimations. 

Thus, “Eq. (1)” takes the form as shown in “Eq. (2)” after log-linearization: 
 

                                                  ln𝐼𝑖𝑡 = 𝑎 + 𝑏(ln𝑃𝑖𝑡) + 𝑐(ln𝐴𝑖𝑡) + 𝑒𝑖𝑡 .                                               (2) 
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In “Eq. (2)”, T denotes technology which is impact per unit of consumption (T=I/PA) and is absorbed in 

the error term. However, technological change can be disaggregated into several components and directly 

impact upon impact per unit of consumption and their effects can be estimated independent of each 

other(York et al., 2003). The subscript i denotes countries and t symbolizing the year. Also, b and c capture 

the exponents of P and A respectively. The constant which scales the model is denoted by a while e denotes 

the idiosyncratic error term which is assumed to be an independently and identically distributed stochastic 

Gaussian process. The STIRPAT model has frequently been employed to analyze the environmental impact 

of human activity. However, this study adopted the human welfare cost of household, ambient and 

occupational PM exposure as impact variables. As such, the study captures the health impacts of human 

activity rather than the environmental impacts. The specific variables of the study are modeled in “Eq. (3)”: 
 

                              𝑙ℎ𝑟𝑖𝑡 = 𝛽0 + 𝛽1𝑙𝑝𝑜𝑝𝑖𝑡 + 𝛽2𝑙𝑟𝑔𝑑𝑝𝑖𝑡 + 𝛽3𝑙𝑟𝑒𝑛𝑔𝑖𝑡 + 𝛽4𝑙𝑛𝑟𝑒𝑛𝑔𝑖𝑡 + 𝛽5𝑙𝑝𝑎𝑡𝑖𝑡 +
𝑢𝑖𝑡 .          (3) 
 

“Eq. (3)” denotes lhr as a health risk or human welfare cost associated with indoor, ambient, and 

occupational PM exposure for country i at time t. The population is denoted by lpop, affluence A which is 

the real GDP is represented by lrgdp. Renewable and non-renewable energy consumptions are denoted by 

lreng and lnreng respectively while lpat denotes patent applications. Renewable and non-renewable energy 

consumption can affect impact per unit consumption because they represent the utilization of clean and 

fossil fuel technologies, respectively. Patent applications represent new technological innovations and are 

expected to affect impact per unit of consumption. This effect, however, depends on whether the 

technological innovation aids the technique of production or increasing the scale of production. Let us 

assume production technique and output is constant; pollution provokes health risks that would increase if 

technological innovation enhanced the scale of production. Nonetheless, if the scale of production and the 

output is constant, the technological innovation that improves the technique of production through energy-

saving methods reducing pollution threats health risks. Furthermore, uit denotes the error term which is 

assumed to be independently and identically distributed across countries i and time t. Following (Shahbaz 

et al. 2016) both sides of “Eq. (3)” are normalized on the population in order to obtain per capita values for 

all the series. This renders a constant impact on the population in the model. 
 

                         𝑙ℎ𝑟𝑘𝑖𝑡 = 𝛽0 +  𝛽1𝑙𝑟𝑔𝑑𝑝𝑘𝑖𝑡 + 𝛽2𝑙𝑟𝑒𝑛𝑔𝑘𝑖𝑡 + 𝛽3𝑙𝑛𝑟𝑒𝑛𝑔𝑘𝑖𝑡 + 𝛽4𝑙𝑝𝑎𝑡𝑘𝑖𝑡 + 𝑢𝑖𝑡 .                  (4)                               
 

In “Eq. (4)”, k denotes that the variables were measured in per-capita values. Note that all the variables 

were normalized on the population before log-linearization. 
 

Since OECD countries’ pollution levels are distributed heterogeneously by specific economic realities; it 

makes sense to control for distributional heterogeneity when estimating the model parameters. To this end, 

this research follows  (Koengkan et al. 2021) and adopts the method of moments quantile regression 

technique (MMQR) (Machado and Santos Silva, 2019) which controls for fixed effects across the 

conditional distribution of the model’s dependent variable. Quantile regressions possess advantages over 

traditional mean-based estimation under specific circumstances. This condition can be explained as low 

sensitivity to outliers and the ability to isolate how the exogenous variables affect the endogenous variable 

across the different quantiles of the endogenous variables. This methodology becomes practical when 

conditional means relationships are weak or non-existent. A notable weakness of previous quantile 

estimation techniques was their inability to control unobserved heterogeneity across the panel cross-

sections. The MMQR method corrects this weakness by allowing the individuals to have distribution wide 

effects rather than the mean shifting scenarios (Canay, 2011; Koenker, 2004). Another innovation of the 

MMQR technique is its ability to yield non-crossing estimates of the regression quantiles. The quantile 

framework is modeled in “Eq. (5)”: 
 

                                  𝑄𝑌(𝜏|𝑋𝑖𝑡) = (𝛼𝑖 + 𝛿𝑖𝑞(𝜏)) + 𝑋𝑖𝑡
′ 𝛽 + 𝑍𝑖𝑡

′ 𝛾𝑞(𝜏) .                                         (5) 
 

Where 𝑋𝑖𝑡
′

 denotes a vector of study-specific independent variables while 𝑄𝑌(𝜏|𝑋𝑖𝑡) is indicative of the 

quantile distribution of the dependent variable Y. This distribution is conditional on the location of 

independent variables X.  
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The scalar coefficient which is analogous to the individual specific quantile-τ fixed effects is denoted by 

𝛼𝑖(𝜏) = 𝛼𝑖 + 𝛿𝑖𝑞(𝜏) and does not represent an intercept, unlike the traditional least square fixed effects. 

The scalar coefficients are time-invariant parameters whose heterogeneous impacts are allowed to have 

distribution-wide effects across the quantiles of the dependent variable Y. The τ-th sample quantile is 

denoted by q(τ) and its estimation is obtained in “Eq. (6)” via the solution of the optimization problem: 
 

                                              𝑚𝑖𝑛𝑞 ∑ ∑ 𝜌𝜏𝑖𝑖 (𝑅𝑖𝑡 − (𝛿𝑖 + 𝑍𝑖𝑡
′ 𝛾)𝑞.                                              (6) 

 

Therefore, the check function is represented by “Eq. (7)”: 
 

                                         𝜌𝜏(𝐴) = (𝜏 − 1)𝐴𝐼{𝐴 ≤ 0} + 𝑇𝐴𝐼{𝐴 > 0}.                                         (7) 
 

In this instance also, the model was specified separately for every three independent variables to ascertain 

to what extent the relationship between the independent variables and the dependent variables are 

heterogeneous.  
 

4. Results 
 

The summary statistics are reported in Table 2. The results show the mean value of non-renewable energy 

was greater than the mean value of renewable energy. This implies that non-renewable energy has a higher 

consumption rate than renewable energy in OECD economies. In addition, the human welfare cost 

associated with ambient PM exposure showed a higher mean value than the health impacts of both 

occupational and household PM exposure. Variables approximately follow a normal distribution. The per-

capita human welfare cost of household air pollution (ldhhapk) had the highest standard deviation amongst 

other variables. This higher dispersion was also observed through its percentile distribution patterns from 

the lowest to the highest percentile. A careful observation of the percentiles of the distribution of ldhhapk 

showed that the bulk of this dispersion occurs from its median to its 90th percentile. The negative skewness 

of most of the variables (lapmk, lopmk, lnrengk, lrgdpk and lpatk) imply as a left-skewed distribution. The 

kurtosis values showed that per-capita non-renewable energy use has the thickest tails with the possibility 

of outliers at the extreme tails of its distribution. Excess kurtosis of 0.7 and 0.3 were also observed in per 

capita renewable energy use and per capita residents’ patents, respectively.  
 

Before estimating the model, it needs to uncover the existence of cross-sectional dependence in the data. 

The usual assumption in panel data analysis is that the error term is independent across cross-sections. This 

assumption usually does not hold in reality because of the existence of globally common shocks, such as 

the 2007 global financial crisis. Different countries heterogeneously can be affected, or country- induced 

shocks which can have regional spill-over effects such as the 1997 Asian financial crisis. The presence of 

the exemplified scenarios can be due to the existence of cross-sectional dependence in panel data. This 

cross-sectional dependency can greatly reduce the efficiency gains of panel data estimators which do not 

control for such effects (De Hoyos and Sarafidis, 2006).  
                                          

Table 2. Summary statistics and correlation matrix 
 

 lapmk lopmk ldhhapk lrengk lnrengk lrgdpk lpatk 

Mean -4.93 -7.18 -9.07 -1.12  1.00  26.57 -9.13 

Median -4.87 -7.20 -9.66 -1.18  1.07  26.53 -8.94 

Maximum -3.47 -6.34 -4.49  2.79  2.23  30.54 -5.71 

Minimum -6.93 -8.07 -12.41 -7.09 -2.17  22.77 -13.54 

Std. Dev.  0.72  0.36  2.14  1.31  0.64  1.59  1.47 

Skewness -0.49 -0.25  0.49  0.07 -1.45 -0.06 -0.33 

Kurtosis  2.84  2.82  1.96  3.70  6.99  2.83  3.36 

Jarque-Bera  46.55  12.94  95.07  23.53  1127.20  2.04  24.98 

Probability  0.00  0.00  0.00  0.00  0.00  0.36  0.00 

P10 -6.00 -7.67 -11.48 -2.76 .156 24.27 -11.26 

P25 -5.31 -7.39 -10.87 -1.98 .817 25.71 -9.87 

P50 -4.87 -7.20 -9.66 -1.18 1.07 26.53 -8.94 
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P75 -4.38 -6.94 -7.23 -.20 1.38 27.66 -8.27 

P90 -4.01 -6.71 -5.72 .54 1.68 28.58 -7.63 

Observations  1110  1110  1110  1099  1109  1094  1046 
 

Thus, the study employed the cross-sectional dependence test of Pesaran (2015) to ascertain the existence 

of cross-sectional dependence in the data and help to determine what type of testing and estimation 

procedure should be applied for the remaining empirical analysis. As reported in table 3, the null hypothesis 

of cross-sectionally dependent for only the welfare cost of occupational PM emissions (lopmk) was failed 

to reject. Panel cointegration and estimation techniques are robust to cross-sectional dependence, thus 

would be employed in the empirical analysis. 
 

Table 3.  Cross sectional dependence test 
 

Variable CD-test mean ρ mean abs (ρ) 

Lapmk 110.17*** 0.78 0.84 

Lopmk -1.12 -0.01 0.64 

ldhhapk 139.78*** 0.99 0.99 

Lrengk 47.16*** 0.33 0.64 

lnrengk 35.41*** 0.25 0.51 

Lpatk 5.04*** 0.04 0.42 

Lrgdpk 131.55*** 0.94 0.94 
 

Note: “***” denotes statistical significance at the 1% level. 
 

To ascertain the time-series properties of the variables, unit root tests were applied to avoid the incidence 

of spurious regression. This is because un-cointegrated non-stationary variables usually yield spurious 

results due to the existence of auto-correlation. As such, the usual practice would be to difference un-

cointegrated non-stationary variables to uncover short-run relationships and to estimate cointegrated non-

stationary variables at levels to uncover long-run relationships. Cross-sectional Im, Pesaran (2007) and Shin 

Test shortened to CIPS unit root test controls for heterogeneity in the autoregressive parameter of the 

Dickey-Fuller regression. Additionally, it controls for the presence of a single common factor that is 

unobserved and may have disparate factor loadings in the data. This mitigates the potentially distorting 

effects of cross-sectional dependence in the data. The test statistics follow a non-standard distribution under 

the null hypothesis of non-stationarity. Table 4 reports the importance of controlling for cross-sectional 

dependence in the test sequence. The results indicate that the null hypothesis for variable non-stationarity 

and the presence of a unit root at levels were rejected for two variables of lrengk and lpatk following 

Maddala and Wu (MW) specification which does not control for cross-sectional dependence. This result 

however does not hold for the CIPS specification which controls for the presence of a single unobserved 

factor and thus mitigates the existence of cross-country correlation. The null hypothesis for the presence of 

a unit root could not be rejected for all variables at levels under the CIPS specification.  Both test 

specifications however supported the rejection of the null hypothesis for the presence of a unit root for all 

variables at first difference. Based on these results, we assume that all the variables are integrated of order 

one or I (1), which implies that they are non-stationary at levels but stationary at first difference. Following 

the unit root results, panel cointegration tests can be validly undertaken to ascertain the presence of long-

run relationships. 
                                                       

Table 4. Unit Root Test 
 

Variables Level 1st Difference Level 1st Difference 

lapmk 28.58 134.1*** 6.96 -6.363*** 

lopmk 70.72 296.2*** 4.85 -9.69*** 

ldhhapk 28.75 301.97*** 13.90 -8.48*** 

Lrengk 136.54*** 954.67*** 0.29 -20.89*** 

lnrengk 34.47 997.67*** 0.17 -21.20*** 

lrgdpk 48.48 401.59*** 0.83 -13.37*** 
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Lpatk 169.94*** 746.55*** 0.32 -19.30*** 

                                  Note: “***” denotes statistical significance at the 1% level. 
 

To uncover the existence of a long-run relationship amongst the variables,  the panel cointegration tests 

were employed(Kao 1999; Westerlund 2007). Cointegration tests are vital to determine if the estimation of 

the long-run model parameters remains valid with non-stationary regressors.  
 

If non-stationary regressors yield stationary errors, then the static ordinary least squares (OLS) estimator 

yields super-consistent estimates of the long-run parameters. In the first technique (Kao 1999), the null 

hypothesis for the cointegration test is the absence of cointegration for all the variables in all the panels 

while the alternative hypothesis is that the variables are cointegrated in all the panels. However, there are 

two versions of the test in the second technique (Westerlund 2007). In the first version of the test, the 

alternative hypothesis follows the cointegration does exist for the variables in all the panels while the second 

version stipulates the cointegration exists for the variables in some of the panels (Westerlund 2007). The 

second version was applied in this study. Before running the tests, the cross-sectional averages of each 

period were subtracted from the series of all the variables to mitigate the impact of cross-sectional 

dependence(Levin et al. 2002). 
 

To estimate the long-run parameters, this paper employs both the fixed effects (FE), OLS, and the random 

effects (RE) generalized linear square (GLS) estimators. Both estimators employed the standard errors 

(Driscoll and Kraay 1998) which are robust to the effects of cross-sectional dependence and autocorrelation 

up to a specific lag. This can aid in mitigating the effects of cross-sectional dependence in the panel data 

estimators. To attain the objectives of this research there is a need to uncover to what extent the dependent 

and the independent variables are heterogeneous. To ascertain to what extent, the relationships between the 

independent variables and ambient, occupational, and indoor pollution are heterogeneous. These panel 

estimations were specified separately for the three independent variables. Additionally, to discriminate 

against which model would be preferred, the Hausman specification test was used. Cointegration tests 

summarized in table 5 evidenced that the cointegration was validated by four test statistics in the Kao (1999) 

specification for both the lapmk and ldhhapk models at the 5% significance levels. For the lopmk model, 

cointegration is validated by two test statistics (Kao 1999) specifications. 
 

Table 5. Cointegration Test 
 

Cointegration test Statistics lapmk model lopmk model  ldhhapk model 

Kao (1999) Modified Dickey-Fuller t 3.16*** 1.90** 2.47*** 

Dickey-Fuller t 3.07*** -0.04 1.51* 

Augmented Dickey- Fuller t 0.42 -0.43 2.19** 

Unadjusted Modified 4.23*** 3.22** 3.01*** 

Unadjusted Dickey-Fuller t 4.63*** 1.29* 2.13** 

Westerlund (2007) All Panels -0.86 -1.65** -1.26 

Some panels -2.44*** -2.31** -2.43*** 

Note: “***”,“**” and “*”denotes statistical significance at the 1% level, 5% and 10% levels respectively. 
 

The Westerlund (2007) specification validates the presence of cointegration in some panels for all models. 

However, only in the lopmk model was cointegration validated for all panels. The results give sufficient 

evidence for the presence of cointegration in all models. The results from the fixed effects, OLS, and 

random effects GLS specifications were not too far apart for all models (see Table 6). Nevertheless, merely 

the lapmk model uncovers a statistically significant negative relationship between per-capita renewable 

energy consumption and lapmk. The same result of statistically insignificant was found in the FE-OLS 

specification. Overall, from the results can be implied that the human welfare cost of air pollution responds 

differently to renewable and non-renewable energy use depending on the type of pollution that stimulates 

the welfare cost. Yet the Hausman tests showed that the fixed effects estimator is the preferred estimator in 

all instances being efficient in the lapmk and ldhhapk models and consistent in the lopmk model. Thus, all 

inference discussions would be based on the fixed effects specification. In the first model, a one percent 

increase in per-capita non-renewable energy consumption was associated with a 0.226 % increase in the 

DALYS associated with ambient PM exposure. In addition, renewable energy consumption had no 
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significant relationship with the disability adjusted life years associated with ambient PM exposure. 

Another notable observation was income significantly reduces the disability adjusted life years associated 

with ambient PM exposure. This outcome is consistent with Koengkan et al. (2021) which observes a 

negative effect of income (per-capita GDP) and outdoor air pollution death rates. 
 

Table 6. Panel Estimation 
 

 lapmk model  lopmk model  ldhhapk model  

Variables FE-OLS      RE-GLS FE-OLS RE-GLS      FE-OLS         RE-GLS 

lrengk  -0.01  -0.06***  0.00  0.00  -0.11***  -0.16***  

lnrengk  0.23***  0.14*  -0.01  -0.03  -0.01  -0.09  

lrgdpk  -0.94***  -0.78***  -0.06***  -0.05***  -2.33***  -2.15***  

lpatk  0.09***  0.08***  0.07***  0.07***  -0.18***  -0.19***  

lrengk  -0.01  -0.06***  0.00  0.00  -0.11***  -0.16***  

Hausman  

RE-GLS—FE-OLS  

RE-GLS—FE-OLS  

6.80  

FE-OLS—RE-GLS  

11.23**  

RE-GLS—FE-OLS  

1.69  

 

Note: “***”,“**” ,“*”denotes statistical significance at the 1% level, 5% and 10% levels respectively. 
 

Moreover, a positive relationship between residents’ patent applications and the disability adjusted life 

years associated with ambient PM exposure was observed. A one percent increase in residents’ patent 

application was explained by a 0.088% increase in the disability adjusted life years related to ambient PM 

exposure. 
 

The dynamics change in the ldhhapk model wherein residents’ patents were observed showed a statistically 

significant but negative relationship with the human welfare cost of household air pollution. Likewise, per-

capita renewable energy consumption had a statistically significant and negative relationship with the 

human welfare cost of household air pollution. The dynamics change in the ldhhapk model wherein 

residents’ patents were observed showed a statistically significant but negative relationship with the human 

welfare cost of household air pollution. Likewise, the utilization of renewable energy per-capita was 

statistically significant but negatively linked to the human welfare cost of household air pollution. On the 

other hand, the non-renewable energy consumption relationship with the human welfare cost of household 

air pollution was statistically insignificant. In the lopmk model, only income and patents had a significant 

relationship with the human welfare cost of occupational PM. Renewable and non-renewable energy 

consumption had a statistically insignificant relationship with the human welfare cost of occupational PM. 

The traditional mean-based specifications outcome implies that every single effect of renewable, non-

renewable energies and residents’ patents on ambient, indoor, and occupational air pollution were 

heterogeneous. This fulfills the objectives of this research. These relationships portend serious implications 

to environmental and health policies. The results from the mean-based estimations may not uncover all the 

latent distribution-wise information embedded in the model as it only isolates inferences based on the 

conditional mean. Due to this reason, the results of the method of moments quantile regression (MMQR) 

estimation outlined below uncovers a few latent dynamics hitherto unknown in the traditional mean-based 

estimators. Table 7 reveals a quantile dependent inverted U-shaped relationship of the human welfare cost 

in terms of particulate matter and the human welfare cost of household air pollution while non-renewable 

energy was consumed. It can also be observed that the negative effect of per-capita renewable energy 

consumption becomes barely significant (p < 0.1) at quantile 0.9 in the lapmk model. This comes with the 
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implication that renewable energy consumption can only have some ameliorating effect on the welfare cost 

of ambient PM exposure at the most extreme quantile.  

In countries with the highest disability adjusted life years associated with ambient PM exposure, renewable 

energy has a weak ameliorating effect. In the lopmk model, non-renewable energy consumption began to 

have an ameliorating effect on the human welfare cost of occupational PM at a quantile 0.75. This is to 

some extent consistent with Koengkan et al. (2021) outcome which uncovers a negative relationship 

between CO2 emissions and outdoor air pollution death rates. Incidentally, real per-capita GDP only began 

to reduce the human welfare cost of occupational PM from the median quantiles, and the scale of this 

ameliorating effect increased across quantiles. Also, residents’ patent applications increased the human 

welfare cost of occupational PM, and the scale of this effect increases across quantiles.  
 

Table 7. Method of moments quantile regression estimate for all variables 
 

Independent 

Variable 

Location Scale Quantiles 

0.1 0.25 0.5 0.75 0.9 

lrengk -0.01 -0.01 0.01 0.00 -0.01 -0.02 -0.02* 

lnrengk 0.23*** -0.09*** 0.38*** 0.31*** 0.22*** 0.14*** 0.09 

lrgdpk -0.94*** 0.05*** -1.01*** -0.98*** -0.93*** -0.90*** -0.87*** 

lpatk 0.09*** 0.01 0.07*** 0.07*** 0.09*** 0.10*** 0.10*** 

Constant 20.54*** -0.86** 21.91*** 21.33*** 20.44*** 19.74*** 19.27*** 

 Location Scale Quantiles 

0.1 0.25 0.5 0.75 0.9 

lrengk 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 

lnrengk -0.03 -0.02 -0.00 -0.00 -0.03 -0.04* -0.05** 

lrgdpk -0.06*** -0.04*** -0.01 -0.03 -0.07*** -0.10*** -0.12*** 

lpatk 0.07*** 0.02*** 0.04*** 0.05*** 0.07*** 0.08*** 0.09*** 

Constant -4.83*** 1.19*** -6.60*** -6.01*** -4.79*** -3.69*** -3.12*** 

 Location Scale Quantiles 

0.1 0.25 0.5 0.75 0.9 

Lrengk -0.11*** -0.18 -0.08*** -0.09*** -0.11*** -0.13*** -0.14*** 

lnrengk 0.01 -0.17*** 0.27*** 0.19*** -0.02 -0.15** -0.24*** 

lrgdpk -2.33*** -0.031 -2.28*** -2.298*** -2.34*** -2.36*** -2.37*** 

lpatk -1.18*** -0.01 -0.17*** -0.17*** -0.18*** -0.19*** -0.19*** 

Constant 51.00*** 1.14* 49.26*** 49.81*** 51.18*** 52.04*** 52.61*** 

  Note: 
     a“***”,“**” and “*”denotes statistical significance at the 1% level, 5% and 10% levels respectively. 

b Bootstrap bias corrected and accelerated standard errors with 1000 Bootstrap replications and 1068 Jackknife replications are employed to mitigate cross-sectional 

dependence. 

 

In the ldhhapk model, it was observed that per-capita renewable energy consumption had an ameliorating 

effect on the human welfare cost of household air pollution. This effect increased across quantiles. Similar 

to the lopmk model, there was a quantile- dependent inverted U-shaped relationship between lnrengk and 

lopmk with a saturation point at the fifth quantile.  
 

In all the estimated models, real GDP per capita which indicates income had a negative relationship with 

the human welfare cost of exposure to all forms of pollution. With the implication that a higher income 

allows an individual to lead a healthier life with the ability to manage health-related risks. 
 

Moreover, the fact that patent applications persuade occupational and ambient air pollution-related health 

risks while mitigating the health risks induced by household air pollution implies that innovation is 

channeled towards the development of safer appliances for home use. Innovations within occupational and 

ambient spaces are channeled towards equipment and devices which may induce air pollution and its 

associated health risks. The results of the study underpin the heterogeneous relationship between the 
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independent and dependent variables across the different specifications employed. Therefore, developing 

policy frameworks to mitigate the heterogeneity of outdoor, indoor, and occupational air pollution need to 

be underlined. 
 

5. Conclusion 
 

This paper examined the usage of renewable and non-renewable energy, income, and patent on the human 

welfare cost of ambient, occupational, and household air pollution in OECD countries. Prior to this research 

(Feng et al. 2019; Hanif, 2018a; Koengkan et al. 2021; Rasoulinezhad et al. 2020) established the impact 

of renewable and non-renewable energy consumption on health indicators which capture mortality rates, 

life expectancy, and specific ailments such as tuberculosis in various locations. The novelty of this research 

lies in the fact that it employed a health indicator that incorporates both mortality and morbidity into a 

single variable. The health indicators employed to capture the DALYS associated with exposure to ambient 

and occupational PM as well as household air pollution. As such they embody holistically, the morbidity 

and mortality impact on human associated with the exposure to the aforementioned categories of air 

pollution. Various empirical techniques were employed to estimate the long-run relationship. Firstly, cross-

sectional dependence tests showed that all the variables were cross-sectionally dependent except for the 

human welfare cost of occupational PM exposure. A second-generation unit root test indicated that all the 

variables were integrated at the first order or I (1). Panel cointegration tests uncovered sufficient evidence 

of a long-run relationship amongst the variables in the three specified models. The traditional mean-based 

panel estimation techniques revealed a statistically insignificant relationship between ambient PM exposure 

renewable energy consumption with the human welfare cost. However, non-renewable energy consumption 

had a positive relationship with the human welfare cost of ambient PM exposure. The finding is consistent 

with the Hanif (2018a) wherein it was uncovered that indoor and outdoor energy consumption had a positive 

and statistically significant relationship with mortality and tuberculosis in sub-Saharan African countries. 

It is also in line with the study of Koengkan et al (2021) in the sense that increased consumption of fossil 

fuel also caused higher air pollution and thus death rates in Latin America and the Caribbean countries. 
 

Regarding the isolating quantile dynamics, it was discovered that renewable energy consumption had a 

negative relationship with the welfare cost of ambient PM exposure at the highest quantile. Consistent with 

Koengkan et al (2021), the negative relationship of renewable energy consumption with outdoor air 

pollution death rates become weakly significant at the median quantile and attains a strong significance at 

the 75th quantile. Additionally, PM exposure to renewable and non-renewable energy did not reveal a 

relationship with the human welfare cost. In addition, household air pollution as a result of renewable 

energy consumption had a negative relationship with the human welfare cost associated with it. This result 

is also consistent with the studies in the literature (Hanif, 2018a; Koengkan et al. 2021) wherein renewable 

energy consumption had a negative relationship with various health risks. However, non-renewable energy 

consumption had no impact on the human welfare cost of household air pollution. This result seems quite 

counterintuitive but when quantile dynamics were isolated, a positive relationship between the human 

welfare cost associated with ambient PM exposure and non-renewable energy consumption at lower 

quantiles was observed. At the median quantile, this relationship became insignificant and negative. This 

negative relationship started gaining statistical significance at higher quantiles. These dynamics can also be 

observed in the relationship between non-renewable energy consumption and the human welfare cost of 

occupational PM exposure (lopmk). A statistically weak and negative relationship between non-renewable 

energy consumption and lopmk was observed at quantile 0.75 following stronger statistical significance 

was obtained at quantile 0.90. These results are consistent with Ibrahim et al. (2021) where a U-shaped 

relationship between natural gas, petroleum, coal, and life expectancy was observed in a panel of sub-

Saharan African countries.  The difference between both studies however lies in the fact that Ibrahim et al. 

(2021) uncovers an empirical relationship based on lower and higher levels of the independent variables 

with regards to the mean values of the dependent variable. However, this research uncovers an empirical 

relationship based on the mean levels of the independent variables with regards to lower and higher 

quantiles of the conditional distribution of the dependent variable. Income was proxied as GDP per capita 

showed a negative relationship with all the categories of the human welfare cost of air pollution. This result 

is consistent with other studies in the literature (Feng et al. 2019; Hanif, 2018a; Koengkan et al. 2021) but 
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is inconsistent with Rasoulinezhad et al. (2020) which uncovers a positive relationship between economic 

growth and mortality rates from specific diseases. One possible explanation is the differences in the 

measurement of economic growth. While this paper measured the economic growth as GDP per capita this 

intrinsically implies income. According to Rasoulinezhad et al. (2020) economic growth or the percentage 

growth of the GDP, implies the market size. The growth of the market may not implicitly be reliant on a 

rise in income but rather population growth may cause very serious implications for disease induced 

mortality rates. Another discovery is the positive relationship between technology which was examined by 

residents’ patents and the human welfare cost of both ambient and occupational PM exposure. Our finding 

is in the same line with Ibrahim et al (2022) findings in which the residents’ patents were negatively related 

to the human welfare cost of household air pollution.  
 

5. 1. Implications 
 

The human welfare cost of ambient, occupational, and household air pollution follows very different 

dynamics in their relationships with the independent variables. Thus, the development of an appropriate 

policy framework about mitigating their incidence may be entailed. Technological development can curtail 

the proliferation of ambient and occupational air pollution can be stimulated by governments and other 

relevant stakeholders. Note that the positive health impact of renewable energy can only be observed at the 

household level. This may be because renewable energy technologies have mostly been adopted by 

households or take up for households’ consumption. The backup for the proliferation of renewable energy 

technologies per se in energy- intensive occupations with high-risk exposure to air pollution can be a pivotal 

element. 
 

5.2. Limitations 
 

There are a few limitations. Firstly, the data for occupational air pollution risk were not disaggregated to 

isolate segment differences. The reason is service and industrial sectors usually do not require the same 

level of energy intensity. Accordingly, air pollution exposure would be heterogeneous across different 

occupational endeavours. Secondly, the scope of this study was limited to OECD countries that have a 

higher concentration of advanced economies. Thus, the policy implications from this research may not be 

readily applied by other countries outside this scope. Although, studies have been undertaken in other 

regions, such as sub-Saharan African countries (Hanif, 2018a), Latin America, and the Caribbean 

(Koengkan et al. 2021) they do not capture the differences embodied in different measurements of health 

risks from air pollution.  These studies utilize a broader definition of health outcomes. To develop policy 

frameworks that could incorporate the various regions of the world, a regional analysis at the global level 

can be done for future research. 
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